Obtaining a comprehensive picture of an organism’s genome
The aim of whole-genome sequencing (WGS) is to determine an organism’s complete DNA sequence in a single experiment, including a comprehensive picture of both the coding and non-coding regions. As such, WGS provides a comprehensive picture of both the coding and noncoding regions of chromosomal and mitochondrial DNA, as well as chloroplast DNA (in plants). WGS enables the detection of all types of genetic variation, including single-nucleotide polymorphisms (SNPs), small insertions and deletions (indels), and structural variants, such as translocations and copy number variation (CNV).1
The genome of bacteriophage ɸX174 (5,386 bp) was the first genome to be fully sequenced, by Fred Sanger and colleagues in 1977.2 In the 14 years that followed, the Sanger method was used to sequence small genomes, such as those of bacteriophages and viruses (all in the 50 – 200 kb range); as well as the first genome of a free-living organism (Haemophilus influenza, 1.8 Mb; published in 19953). Sanger sequencing was also used to sequence the first plant genome (Arabidopis thaliana, 135 Mb; published in 20004) and the first draft of the human genome (published in 20015). The advent of next-generation sequencing (NGS) made sequencing of the first human cancer genome possible (published in 20086). Continuous improvements in NGS technology (and concomitant reductions in per-base cost) have since enabled routine, high-throughput WGS of both simple and highly complex genomes.
Among other applications, WGS research enables us to:
- gain deeper insight into the genomic basis of health, disease and ancestry than what is possible with targeted sequencing approaches
- discover biomarkers and understand pharmacogenetics
- perform genome-level comparative analysis, to identify synteny, orthologs and horizontal gene transfer events
- generate reference genomes for agriculturally important animals and plant, to assist with breeding
- support ecology and conservation biology
- understand disease outbreaks and public health
- secure food safety
- understand antibiotic resistance
- study microbiomes and their role in human health and disease