The Human Genome Project, which mapped the human genome in 2001 and completed the euchromatic sequence in 2004, rapidly accelerated the field of human genetics. The ~3 billion base pairs and 20-25 thousand protein-encoding genes that were published in this project established a solid foundation for biomedical research. At the time, the most advanced technology used by researchers was Sanger sequencing. It was time-consuming and expensive, costing approximately $10 million per human genome in 2006.1
Next-generation sequencing (NGS; also known as second-generation sequencing) techniques were introduced in 2007 and their subsequent advancements have reshaped and expanded human genetics research. The ability to analyze whole genomes at a fraction of the time and cost has been instrumental to the widespread clinical applicability of NGS.2