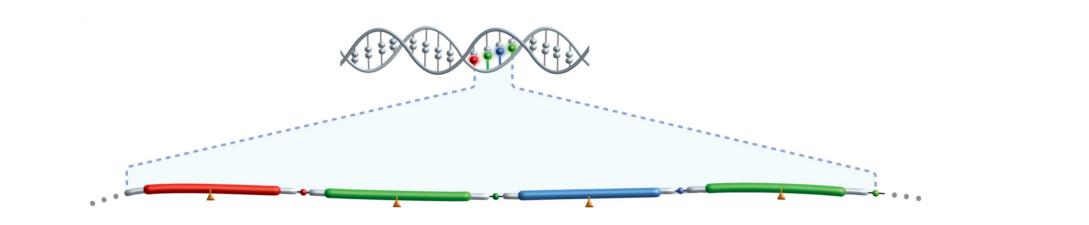
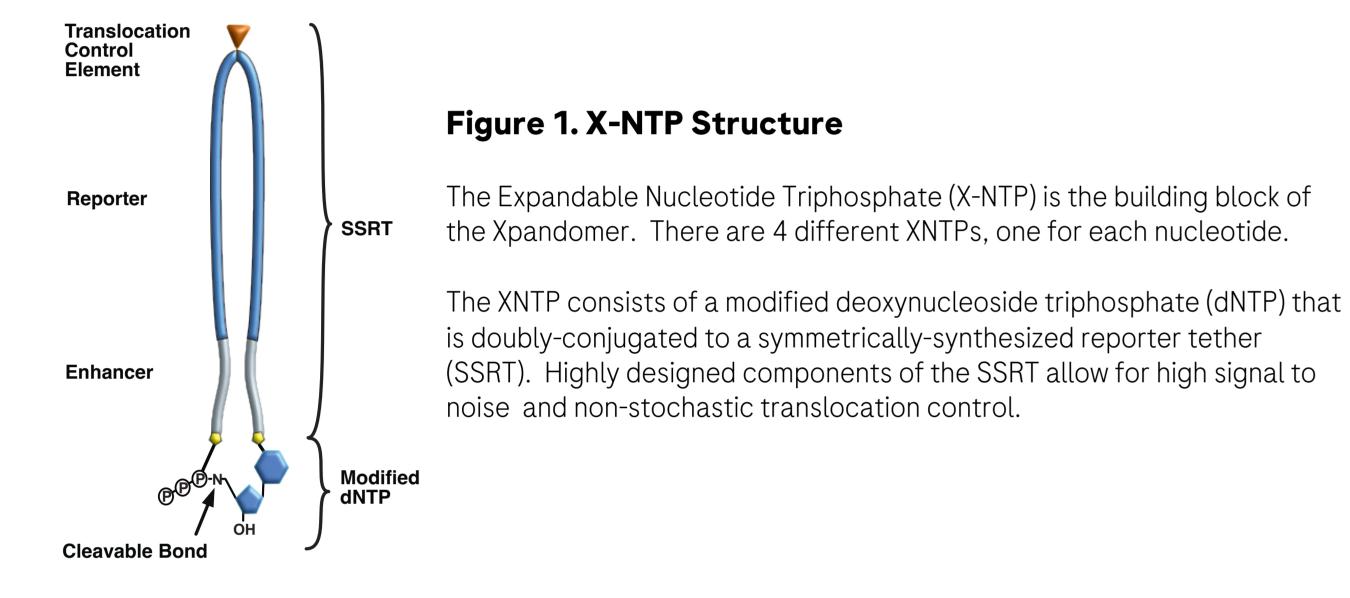
Redefining nanopore sequencing with Duplex Sequencing by Expansion (SBX-D) A high-accuracy, high-throughput sequencing technology

Jagadeeswaran Chandrasekar¹, Melud Nabavi¹, Aaron Jacobs¹, Marc Prindle¹, Cynthia Cech¹, Taylor Lehmann¹, Kendall Berg¹, Alan Kimura¹, Alberto Gatto², Alec Sautter¹, Alex Lehmann¹, Ali Carroll¹, Amal Chaturvedi², Anasha Arryman¹, Bill Maney², Brent Banasik¹, Brittany Kesic¹, Charlotte Yang¹, Chen Zhao², Daniel Zinder², Dieter Heindl³, Dinendra Abeyawardhane¹, Douglas Lopez², Emily Ormbrek¹, Grant Kingsley¹, Hannes Kuchelmeister³, Hasham Saqib², Jason Komadina², Geoffrey Barrell², Joanne Leadbetter¹, John Mannion², Kevin Smith¹, Lacey McGee¹, Mahdi Golkaram², Majid Babazadeh¹, Maryam Shenasa², Matthew Lopez¹, McKenna Osentowski¹, Megan Freer¹, Megan LeProwse¹, Megan Rogers-Peckham¹, Michael Kovarik¹, Mitchell Wolfin¹, Robert Busam¹, Ron Cicero², Salka Barrett¹, Scott Helgesen², Scott Miller¹, Takeshi Harada², Thao Ho¹, Thomas Reid¹, Robert McRuer¹, Mark Kokoris¹

¹Roche Sequencing Solutions, Inc. Seattle, WA, USA
²Roche Sequencing Solutions, Inc. Santa Clara, CA, USA
³Roche Diagnostics GmbH, Penzberg, German

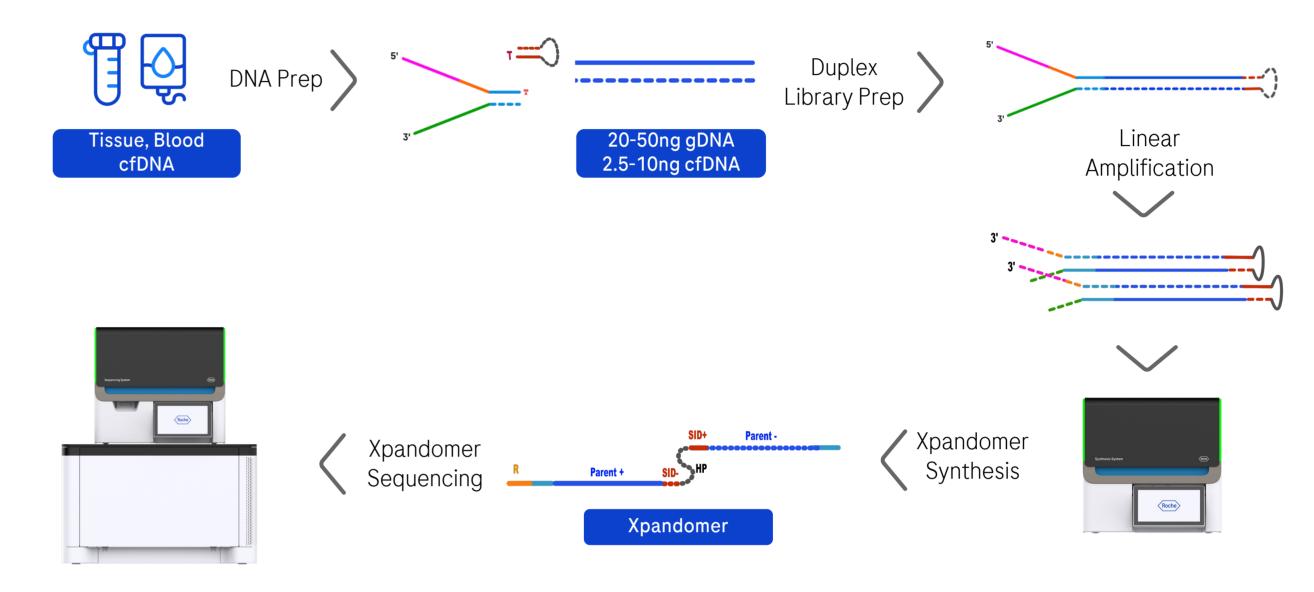


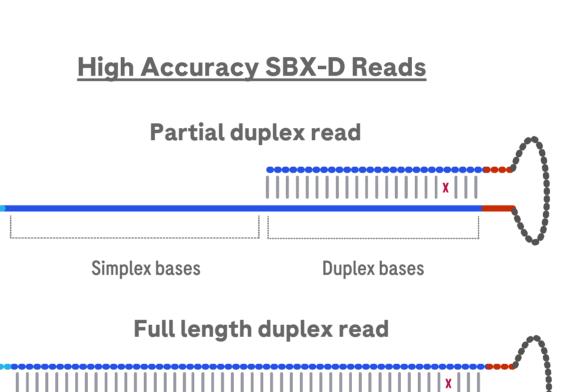
Copies of this poster obtained through QR (Quick Response), and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.


Poster #P23.017.C

Introduction to Sequencing By Expansion (SBX)

SBX Duplex (SBX-D)


Single molecule sequencing of nucleic acids is limited by the spatial differentiation of neighboring nucleotides. Sequencing By Expansion (SBX) solves these issues by creating an Xpandomer (Xp) surrogate molecule with >50x separation between high signal-to-noise nucleotide reporters.



SBX consists of two steps: synthesis and sequencing. First, during synthesis, the DNA template is enzymatically and chemically transcribed into the lengthened Xp molecule that contains high signal-to-noise reporters (**Fig. 2**). Next, the Xp is sequenced by stepwise translocation through a nanopore, (**Fig. 3**) where each step measures a well-defined electrical signal specific to one of four reporters that identifies the DNA base.

Duplex Sequencing By Expansion (SBX-D) is a library prep and sequencing workflow that links both strands of the target DNA in a single sequencing read. This approach uses intramolecular consensus of the complementary reads to identify discordant calls and achieve high accuracy.

Figure 5. SBX-D Standard Workflow

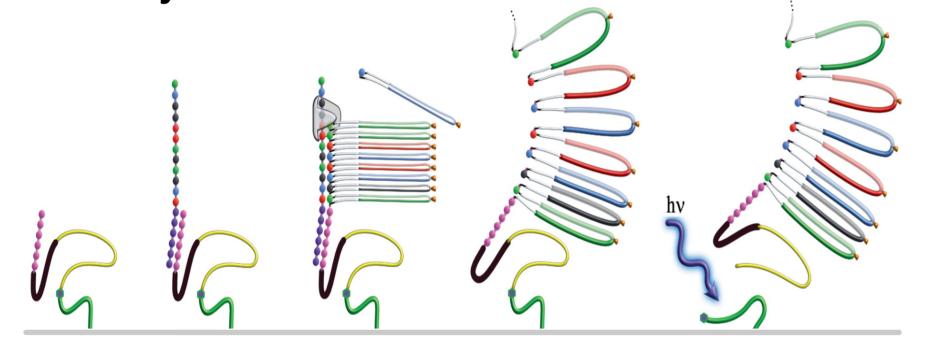


Figure 6. SBX-D Read Categories

Full-length duplex reads contain both the full parent+ and parentstrands. The vast majority of duplex base positions are concordant and marked as high quality. A small percentage of duplex positions will be discordant, and an intramolecular consensus base call will be made, and marked with a low quality score.

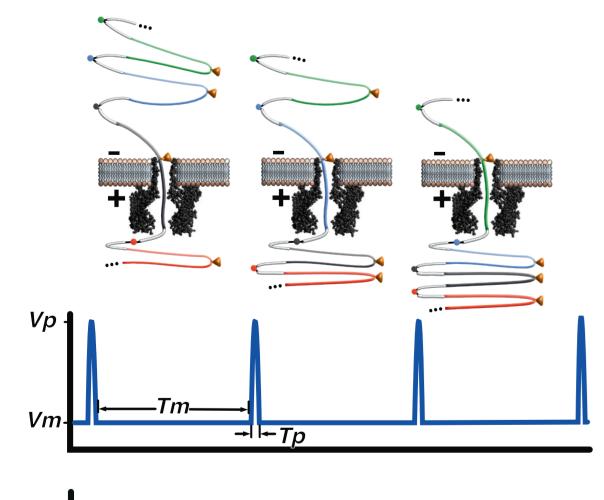

Partial duplex also contain simplex stretches of base calls. For these positions in the resulting intramolecular consensus reads, bases are once again called, but are given a medium categorical quality score. On average, the quality of simplex bases is >Q20.

Figure 2. Xpandomer Synthesis

Flow Channel Surface

(1) A DNA template is hybridized to a specialized, acid-stable primer called an extension oligo (EO), which is anchored to the flow channel. (2) The primed DNA is extended via a highly-engineered DNA polymerase (Xp Synthase) and the four base-specific XNTPs. (3) Acid treatment cleaves each incorporated XNTP, expanding the Xp backbone. (4) The fully formed Xp is released from the solid substrate by photocleavage, and the eluted sample is ready for measurement in the nanopore sequencer.

Figure 3. Xpandomer Measurement

The Xp is measured in a nanopore inserted into a lipid bilayer membrane. An applied periodic electrical field is used to drive threading of the Xp through the nanopore.

The Xp translocates through the pore until paused by the Translocation Control Element (TCE). The TCE is positioned to hold its adjacent base reporter in the barrel of the nanopore while the electrical signal is measured. A brief, high voltage pulse is used to advance the Xp to the next TCE and subsequent reporter measurement. This cycle continues until the Xp is fully translocated and the

SBX-D base accuracy, coverage and throughput metrics are calculated using ONLY concordant duplex bases.

Results - GIAB

SBX-D and SBX-Fast workflows >99.9% of the genome with at least 10x coverage. F1 scores are calculated on GIAB 4.2.1 high confidence region using all reads from 1 hour of sequencing.

SBX-D Workflow (Linear Amp.)						GATK + Roche Machine Learning F1 Score		Google DeepVariant F1 Score	
7 plex	Sample	Total Reads	Median Coverage	Mean Insert Read Length	Q score	SNV	Indels	SNV	Indels
	HG001	0.72	38	244	40.2	99.82%	99.70%	99.87%	99.73%
	HG002	0.76	42	251	41.1	99.78%	99.73%	99.84%	99.75%
	HG003	0.75	41	249	40.6	99.74%	99.63%	99.80%	99.66%
GIAB	HG004	0.70	37	246	39.6	99.76%	99.67%	99.83%	99.72%
	HG005	0.70	38	252	40.5	99.76%	99.74%	99.84%	99.77%
	HG006	0.79	44	254	40.6	99.77%	99.77%	99.83%	99.80%
	HG007	0.71	38	248	40.7	99.73%	99.68%	99.80%	99.70%

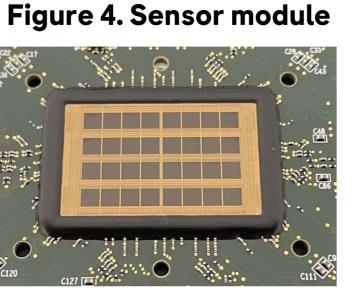
SBX-Fast Workflow (Amp. free)						GATK + Roche Machine Learning F1 Score		Google DeepVariant F1 Score	
Trio	Sample	Total Reads	Median Coverage	Mean Insert Read Length	Q score	SNV	Indels	SNV	Indels
СЕРН	HG001	1.24	53	190	40.1	99.81%	99.83%	99.86%	99.80%
	NA12891	1.24	52	192	40.4		Ground truth not available		
	NA12892	1.23	51	192	40.5				
	HG002	1.21	56	200	40.1	99.77%	99.82%	99.83%	99.80%
Ashkenazi	HG003	1.16	53	199	40.0	99.72%	99.71%	99.78%	99.71%
	HG004	1.12	50	198	39.9	99.75%	99.79%	99.82%	99.80%
Chinese	HG005	1.17	54	203	40.0	99.76%	99.81%	99.83%	99.81%
	HG006	1.10	50	203	40.2	99.75%	99.81%	99.82%	99.83%
	HG007	1.20	53	200	40.2	99.72%	99.74%	99.78%	99.74%

nanopore becomes open again to capture another Xp.

Materials & Methods

SBX-D Standard Workflow

50 ng of unsheared genomic DNA from HG001-7 was input into the standard SBX-D library prep workflow. Linear amplification is performed instead of standard PCR, which gives significant advantages, including decreasing error propagation. Following Xp synthesis, the encoded Xpandomers were sequenced as a 7 plex for 1h on an 8M CMOS-based sensor module.


SBX-Fast Amplification-Free Workflow

2 µg of unsheared genomic DNA from HG001-7 was input into a more streamlined SBX-D library prep workflow without amplification. Samples were sequenced as a trio for 1 hr.

Conclusions

SBX is a transformative sequencing technology that pairs high throughput and high accuracy to improve existing applications and to enable innovation in biological research and molecular diagnostics. *Please contact lead author at: jagdeesh.chandrasekar@roche.com*

The SBX technology is in development and not commercially available. The content of this material reflects current study results or design goals. Xpandomer is a trademark of Roche. All other product names and trademarks are the property of their respective owners.

