Demonstrating the versatility, accuracy, and throughput of Sequencing By Expansion (SBX)

Ultra fast whole genome sequencing from sample prep through variant analysis in less than 4 hours

Copies of this poster obtained through QR (Quick Response), and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

Poster no. 4092T

Total time: 3hr 59m

Jagadeeswaran Chandrasekar, Amal Chaturvedi, Austin Doupnik, Boone Hapke, Dieter Heindl, Dilmi Perera, Doug Lopez, Elise Le, Emily Ormbrek, Fong Chun Chan, Chan, Hannes Kuchelmeister, Jayalakshmi Rajaraman, Mahai Golkaram, Mannion, Kendall Berg, Matthew Lopez, Maryam Shenasa, Matthew Lopez, Maryam Shenasa, Matthew Lopez, Maryam Rabiee, Maryam Rabiee, Maryam Shenasa, Matthew Lopez, Maryam Rabiee, Maryam Ra Toma, ¹ Salka Barrett, ¹ Sam Bandara, ² Taher Mun, ² Taylor Lehmann, ¹ TK Wasserman, ² Won-Mean Lee, ² Yui Umezawa, ¹ Mark Kokoris ¹

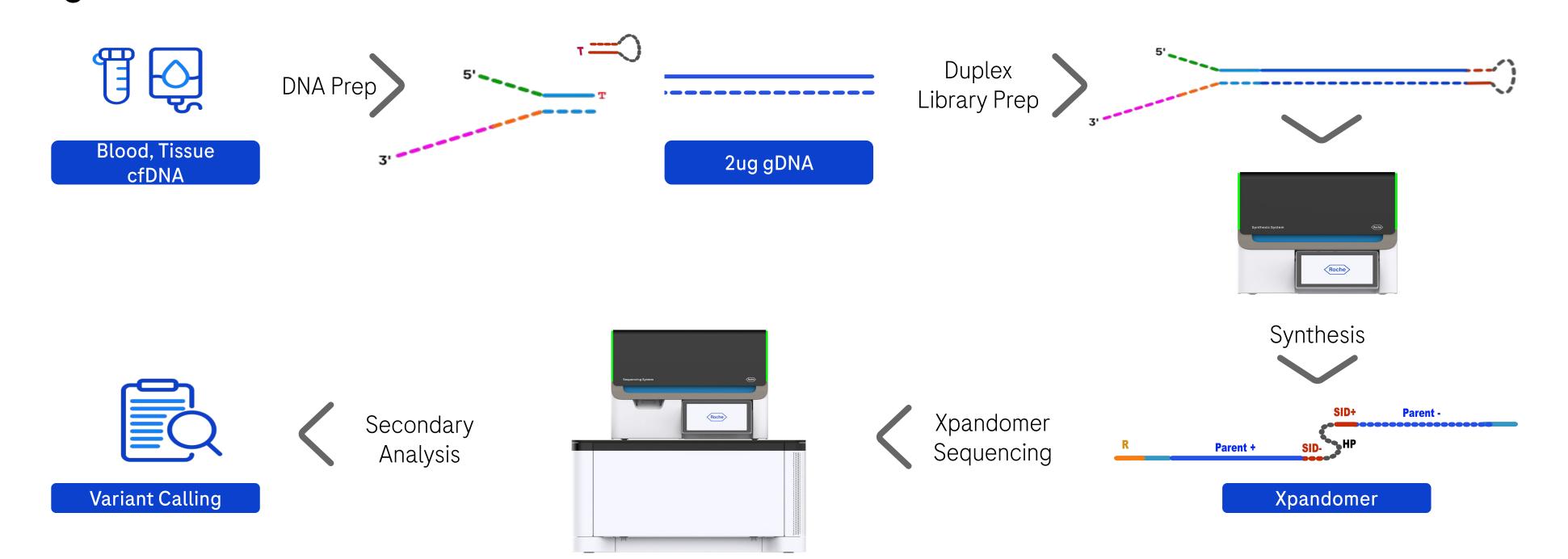
¹Roche Sequencing Solutions, Inc, Seattle, WA, USA; ²Roche Sequencing Solutions, Inc, Santa Clara, CA, USA; ³Roche Diagnostics GmbH, Penzberg, Germany

Introduction to SBX-Fast

Sequencing By Expansion (SBX) technology is a novel sequencing approach that uses a biochemical process to encode the sequence of a target nucleic acid molecule into a measurable surrogate polymer called an Xpandomer. SBX-Fast is duplex-based, amplification-free research workflow, designed with the intent to provide a deployable solution for rapid sequencing applications where time to result is important. This workflow produces high-accuracy results by linking both strands of the target DNA in a single sequencing read, enabling rapid and accurate identification of InDels, SNVs, STRs, and CNVs.

We evaluated SBX-Fast's variant-calling performance across 41 diverse cell lines from the Coriell Institute for Medical Research, which encompass a wide array of genetic conditions. Furthermore, in a speed trial to determine the minimum turnaround time, we successfully demonstrated the complete process—from library preparation to the final VCF variant file—in under four hours (3 hours, 59 minutes), using the HG002 reference sample.

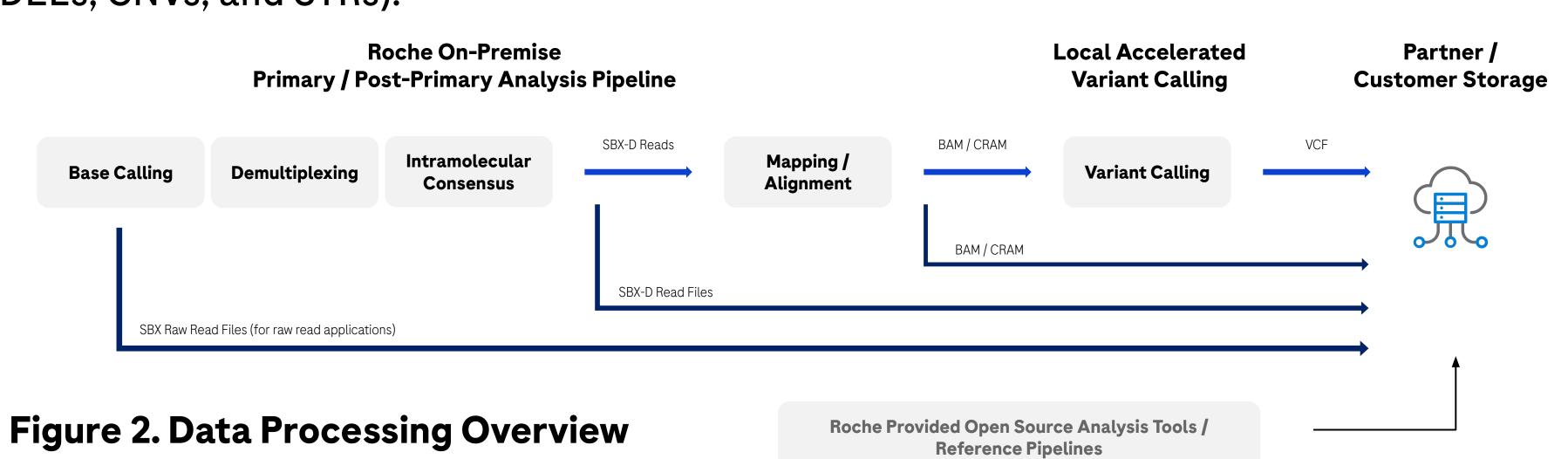
Materials and Methods


Reference Benchmarking

2 μg of unsheared genomic DNA from each sample was input into the SBX-Fast workflow. Samples were sequenced as a trio for 1 hr.

Time Trial

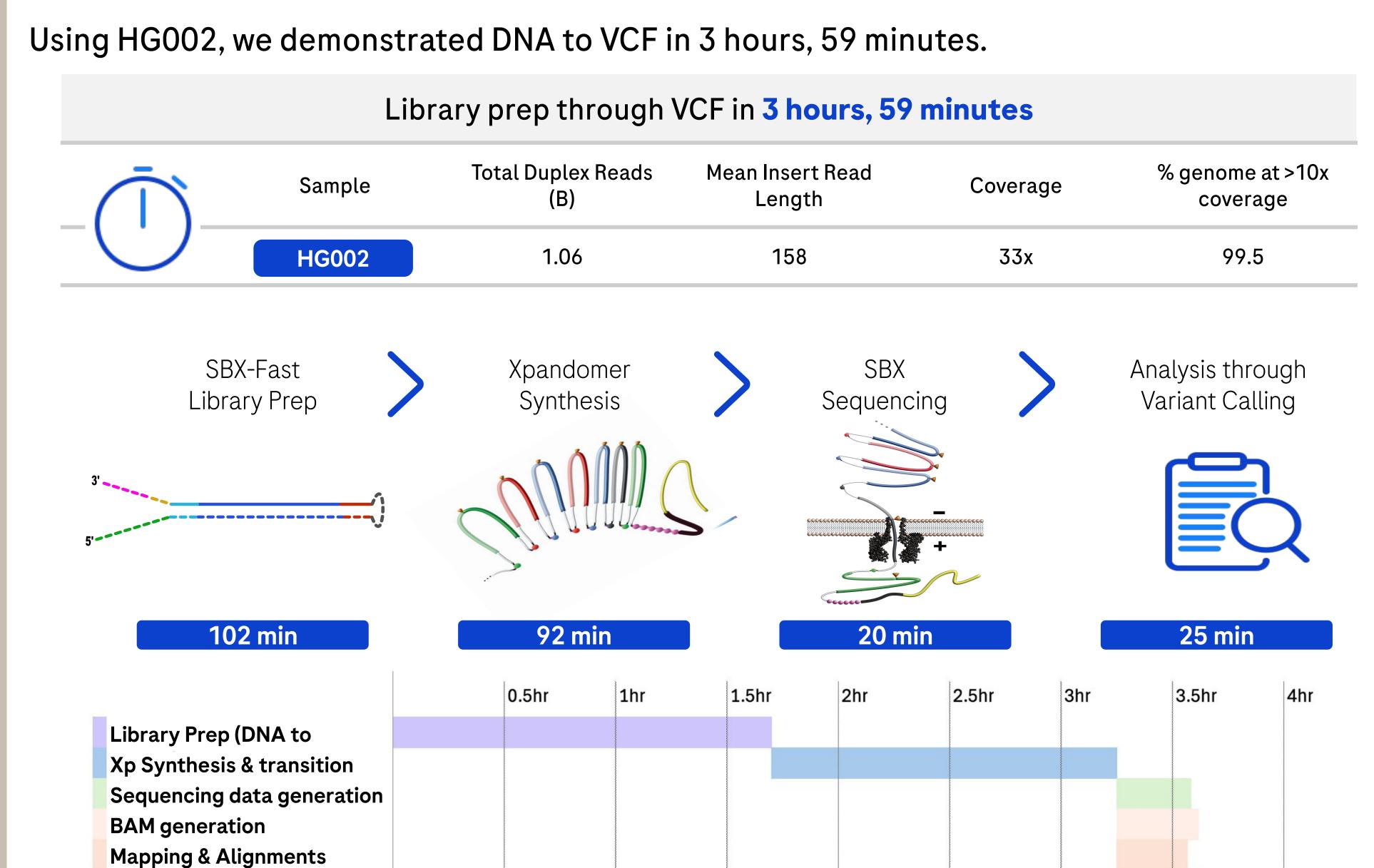
2 ng of unsheared genomic DNA from HG002 was input into a time optimized SBX-Fast workflow, and sequenced solo for 20 minutes to target >30x coverage.


Figure 1. SBX-Fast Workflow

SBX-D data were processed through SBX-optimized open source (XOOS) variant callers. 2-3

Accelerated Data Processing Overview

Raw sequencing data is processed (basecalling, demultiplexing, intramolecular consensus) in real-time on the sequencing system's integrated hardware. These consensus reads are then continuously mapped to the reference genome. Once the target coverage depth is achieved for a sample, a merged and sorted BAM file is generated. After the BAM files are generated, the Roche SBX Optimized Open Source (XOOS) tools are used for variant detection (SNVs, INDELs, CNVs, and STRs).


Reference Benchmarking (Results)

As shown in the table below, we successfully called the expected variant in all reference samples.

Sample ID	Description	Variant		Sample ID	Description	Variant Type	
		Type		NA04327	Duchenne muscular dystrophy	CNV	V
NA25495	Choroideremia	CNV	V	NA23127	Muscular Dystrophy, Becker Type	CNV	V
NA23710	Epileptic encephalopathy	CNV	V	NA06804	Lesch-Nyhan syndrome	CNV	V
NA02325	Translocated chromosome	CNV	V	NA09834	Basal Cell Nevus Syndrome	CNV	V
NA21698	Chromosome deletion & CNV Reference	CNV	V	NA12214	Charcot-Marie-Tooth disease type 1A	CNV	V
NA08618	Chromosome deletion	CNV	V	NA05876	DiGeorge syndrome	CNV	V
NA03330	Trisomy 13, Patau syndrome	CNV	V	NA22010	Propionic Acidemia, clinically affected	SNV	V
NA13480	Williams-Beuren syndrome	CNV	V	NA22011	Clinically unaffected mother	SNV	V
NA10283	Hyperglycerolemia	CNV	V	NA22012	Clinically unaffected father	SNV	V
NA05117	Duchenne muscular dystrophy	CNV	V	NA14553	Arterial Calcification	SNV	V
NA22208	Propionic acidemia	CNV	V	NA00882	Fabry Disease	SNV	V
NA04520	Tuberous Sclerosis Complex 2	CNV	V	NA00372	Gaucher Disease, Type I	SNV/InDel	V
NA06151	Machado-Joseph Disease	STR	V	NA22113	Propionic Acidemia	Delins	V
NA04079	Friedreich's Ataxia	STR	V	MAZZIIO	clinically affected sister 1	Detins	
NA06894	Fragile X mental retardation	STR	V	NA22112	Propionic Acidemia	Delins	V
NA03756	Myotonic Dystrophy	STR	V	NA22111	clinically unoffected sister 2	Delins	
NA13716	Dentatorubral-Pallidoluysian Atrophy	STR	V		Clinically unaffected mother		
NA23709	Spinal and bulbar muscular atrophy	STR	V	NA22110	Clinically unaffected father	Delins	
GM28741	Homocystinuria-megaloblastic anemia	CNV	V	NA11195	Phenylketonuria Mystenia Dystrophy	SNV/InDel	V
GM27903	Cerebral creatine deficiency syndrome 1	SNV/INDEL	V	NA23391	Myotonic Dystrophy	STR	
GM28606	Shwachman-Diamond syndrome	SNV/INDEL	V	NA05131	Fragile X	STR	
Table 1. Reference Samples Results				NA16202	Clinically unaffected mother	STR	V

Table 1. Reference Samples Results

Time Trial (Results)

Conclusion

For settings requiring rapid genomic analysis, SBX-Fast has the potential to deliver timely information that could impact decisions to improve outcomes.

Disclosures

This study was funded by Roche Diagnostics International Ltd (Rotkreuz, Switzerland)

All authors are employees of Roche Sequencing Solutions, Inc. or Roche Diagnostics GMBH and may hold non-voting equity securities in F. Hoffmann-La Roche Ltd.

References

1. https://doi.org/10.1101/2025.02.19.639056

Sorting & Bam writing

Secondary analysis

- 2. https://roche-axelios.gitbook.io/xoos
- 3. "Enabling rare disease research with rapid workflows by SBX technology and the AVENIO Edge automated KAPA H1yperExome V2 solution", European Human Genetics Conference in Milan, Italy, May 2025

NA16203

Friedreich's Ataxia

STR